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Abstract. We give a systematic classification and a detailed discussion of the structure, motion
and scattering of the recently discovered negaton and positon solutions of the Korteweg–de Vries
hierarchy. There are two distinct types of negaton solutions which we label [Sn] and [Cn],
where(n + 1) is the order of the Wronskian used in the derivation. For negatons, the number
of singularities and zeros is finite and they show very interesting time dependence. The general
motion is in the positivex direction, except for certain negatons which exhibit one oscillation
around the origin. In contrast, there is just one type of positon solution, which we label [C̃n].
For positons, one gets a finite number of singularities forn odd, but an infinite number for
even values ofn. The general motion of positons is in the negativex direction with periodic
oscillations. Negatons and positons retain their identities in a scattering process and their phase
shifts are discussed. We obtain a simple explanation of all phase shifts by generalizing the
notions of ‘mass’ and ‘centre of mass’ to singular solutions. Finally, it is shown that negaton
and positon solutions of theKdV hierarchy can be used to obtain corresponding new solutions
of the modifiedKdV hierarchy.

1. Introduction

One of the most studied nonlinear evolution equations in mathematical physics is the
Korteweg–de Vries (KdV) equation

ut − 6uux + uxxx = 0 . (1)

It is well known that theKdV equation is completely integrable and gives rise to an infinite
number of conservation laws [1–3]. Although a great deal is known about non-singular
multi-soliton solutions, singular solutions of theKdV equation have been discussed to a much
lesser extent [4–7]. To our knowledge, a comprehensive treatment of singular solutions is
not available. All the above solutions as well as more complicated new solutions called
negatons and positons can all be obtained from Matveev’s recent generalized Wronskian
formula for solutions of theKdV equation [5]. This formula makes use of an arbitrary number
of solutions of the Schrödinger equation at energiesk2

i and their derivatives with respect to
ki as inputs. In this paper, we only consider the simplest case of a zero background potential,
that is the free particle Schrödinger equation. If only one input solution at energyk2 is
used and it has negative (positive) energy, the resultingKdV solutions are called negatons
(positons). Using several input solutions permits the study of scattering. Similar approaches
can also be applied to other nonlinear evolution equations [8–10].
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In this paper, we make a systematic classification of negatons and positons for the
entire KdV hierarchy and study their structure, motion and interactions. We develop a
physical picture underlying negaton and positon solutions which helps to give an intuitive
understanding of theirx andt dependences. Similarly, we generalize the standard concepts
of ‘mass’ and ‘centre of mass’ to non-singular solutions, and use them to give simple
quantitative explanations for the phase shifts in various scattering processes. We give
many figures showing negatons and positons in motion, since this provides a good pictorial
grasp of time dependence. In section 2, we present the general formalism and establish
notation relevant to solutions of theKdV equation. Section 3 contains a detailed description
and classification of negaton solutions. There are two types of negatons [Cn] and [Sn],
n = 0, 1, 2, . . . . The singularity patterns and their time dependence are particularly
interesting and we describe these in detail. Section 4 contains a description of the structure
and motion of positons. There is only one type of positon [C̃n], n = 0, 1, 2, . . . and one has a
finite number of singularities for odd values ofn. The motion for this case is physically quite
different from the negaton case. This can be understood, since one is using trigonometric
functions instead of hyperbolic functions. Scattering of negatons and positons is treated
in section 5. It is found that negatons and positons emerge from an interaction preserving
their identity, but often with a shift in phase. In section 6, we discuss the positon and
negaton solutions of the modified Korteweg–de Vries (mKdV) equation. Finally in section 7
we discuss the positon and negaton solutions of the entireKdV and mKdV hierarchy. Some
open problems and concluding remarks are given in section 8.

2. General formalism and notation

Solutions of equation (1) can be systematically obtained from solutions of the free particle
Schr̈odinger equation (¯h = 2m = 1):

− d2φi

dx2
= Eiφi . (2)

For Ei = −k2
i < 0, a convenient choice of independent solutionsφi(kix) is sinhkix and

coshkix, whereas forEi = k̃2
i > 0, the independent solutionsφi(k̃ix) can be chosen to

be the trigonometric functions siñkix and cos̃kix. (It can be shown that nothing new is
obtained by taking more general linear combinations.) We consider solutions of (1) of the
form [5, 11]

u(x, t) = −2
∂2

∂x2
ln W = 2

(W ′2 − WW ′′)
W 2

(3)

where W = W(φ1, . . . , φn) is the Wronskian determinant composed ofφi(θi). Here θi

stands for

θi = ki(x + ξi(ki) − 4k2
i t) (4)

for Ei < 0, and

θ̃i = k̃i (x + ξ̃i (k̃i ) + 4k̃2
i t) (5)

for Ei > 0. ξi(ξ̃i) are arbitrary functions ofki(k̃i), i = 1, 2, . . . , n.
For clarity, let us first focus on solutions of theKdV equation which come from negative

energy solutions of equation (2). The simplest choice is to have a Wronskian of order 1.
Here, we have two types of solutions which can be either coshθ or sinhθ . For φ = coshθ ,
one getsu(x, t) = −2k2sech2θ , which we denote by [C0]. This is the usual non-singular
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one-soliton solution moving to the right (along the positivex direction) with speed 4k2. For
φ = sinhθ , one getsu(x, t) = 2k2cosech2θ , which we denote by [S0]. This is the simplest
singular solution of theKdV equation [1]. There is just one singularity atx = 4k2t − ξ(k)

moving to the right at speed 4k2. [C0] and [S0] are called negaton solutions of order 0.
For Wronskians of order 2 there are three types of solutions:

(i) φ1 = coshθ1 φ2 = coshθ2

(ii) φ1 = coshθ1 φ2 = sinhθ2

(iii ) φ1 = sinhθ1 φ2 = sinhθ2

whereθ1, θ2 are given by (4), and correspond to speeds 4k2
1 and 4k2

2, respectively. It is easy
to check [5] that case (ii) is the well known finite two-soliton solution of theKdV equation,
whereas cases (i) and (iii) correspond to solutions with one singularity.

Of particular interest to us is the situation wherek1 = k and k2 = k + ε with ε

tending to zero. In order to get a non-trivial solution, it is necessary to make the choice
ξ1(k) = ξ2(k) = ξ(k) in (4). For cases (i) and (iii),W , W ′ and W ′′ are all O(ε). Thus,
from (3), u(x, t) is O(ε0). This is a new solution [5] of theKdV equation which does not
vanish asε → 0. For case (ii), however,W → constant asε → 0 and no new solutions
result.

The new solutions coming from cases (i) and (iii) will be denoted by [C] and [S],
respectively and are called negaton solutions of order 1. More explicitly, for these cases
φ2(k + ε) = φ1(k) + ε∂kφ1(k) + O(ε2), and the Wronskian is

W(φ1, φ2) ≡ W(φ1, φ1 + ε∂kφ1) = εW(φ1, ∂kφ1) . (6)

The multiplicative constantε does not play any role in obtainingu(x, t) using (3) and can
be dropped from the Wronskian. For the [C] case,

W ≡ W(coshθ, ∂k coshθ) = kγ + coshθ sinhθ (7)

where

γ ≡ ∂kθ = x + ξ(k) + k∂kξ(k) − 12k2t . (8)

Similarly, for the [S] case, the Wronskian reads:

W ≡ W(sinhθ, ∂k sinhθ) = −kγ + coshθ sinhθ . (9)

Although we have so far only discussed negaton Wronskians of order 1 and 2, the
above results can be readily extended to Wronskians of any higher order. A straightforward
extension of (6) yields a Wronskian determinant of order(n + 1):

W = W(φ, ∂kφ, . . . , ∂n
k φ) . (10)

This is a special case of the generalized Wronskian formula given by Matveev [5]. If the
Wronskian of (10) withφ = coshθ is used in (3), the resultingKdV solution is called a
negaton [Cn] of order n with n = 0, 1, 2, . . . . Similarly, the choiceφ = sinhθ yields a
negaton [Sn] of order n. To summarize, the negaton corresponding to equation (10) has
the physical interpretation of merging(n + 1) solutionsφ of the free particle Schrödinger
equation all with wave numbers neark and identical phasesξ(k).

The entire discussion given above for negatons also holds for positive energy solutions
of the Schr̈odinger equation. The solutions of theKdV equation resulting from the choices
φ = cosθ̃ and φ = sinθ̃ are called positons of ordern [5] and are denoted by [C̃n] and
[S̃n], respectively.

An important difference between positons and negatons is that the positons [C̃n] and
[S̃n] are not independent. In fact, the choicek̃ξi = π/2 in θ̃i in (5) transforms [̃Cn] into
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[S̃n]. On the other hand, negatons [Cn] and [Sn] are physically different. As we shall see,
they usually have a different number of singularities for the same value ofn. However, one
can mathematically transform [Cn] into [Sn] by the unphysical imaginary choice of phase
kξi = iπ/2.

It is also interesting to observe that positon solutions can be obtained from the
corresponding negaton solutions via the changek → ik̃. Note that thex and t dependence
of all solutions comes fromθ (θ̃) and derivatives ofθ (θ̃) with respect tok (k̃). From now
on, our discussion is based on making the simplest choiceξ(k) = 0 in (4), (5) and (8). It
is important to observe that under the transformationsx → −x and t → −t , θ (θ̃) and
all derivatives with respect tok (k̃) change sign. As a result, the WronskianW in (10)
has the propertyW(−x, −t) = ±W(x, t). Thus, for all negaton or positon solutions, it
follows thatu(x, t) = u(−x, −t), and it is sufficient just to consider the behaviour at either
negative or positive values oft . In particular, at timet = 0, all solutions are symmetric
u(x, 0) = u(−x, 0).

The ‘mass’ and ‘centre of mass’ of any solutionu(x, t) of the KdV equation are useful
concepts in analysing the behaviour of negatons and positons. Here,u(x, t) is identified
with a linear mass distribution, and the total mass is given by

M ≡
∫ ∞

−∞
u(x, t) dx . (11)

This definition is only useful for non-singular solutionsu(x, t). However, it is easy to
obtain an alternative, more generally applicable definition. Using equation (3) for non-
singularu(x, t), the total mass can be written as

M = −2[W ′/W ]+∞
−∞ . (12)

We will use (12) as the definition of the massM, an expression which is well defined for
both non-singular as well as singular solutionsu(x, t). M is a constant of the motion. Note
that our definition is equivalent to thex+ iε regularization procedure suggested in [7]. Also,
the position of the centre of mass is given by

xCM ≡ 1

M

∫ ∞

−∞
xu(x, t) dx . (13)

Again, using equation (3), it is possible to rewrite the expression for the centre-of-mass
position,

xCM = 1

M

[
− 2x

W ′

W
+ ln W 2

]+∞

−∞
. (14)

This definition can be used for all solutionsu(x, t). The centre of mass moves at a constant
speed [1].

3. Structure and motion of negatons

In this section, we describe thex and t dependences of negatonsu(x, t) corresponding to
Wronskians of different orders. A summary of some characteristics and properties of the
simplest negatons is given in table 1.

Wronskians of order 1. Here, one has the familiar results:

[C0] u(x, t) = −2k2sech2θ (15)

[S0] u(x, t) = 2k2cosech2θ . (16)
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Table 1. Various characteristics of [Cn] and [Sn] negatons forn = 0, 1, 2, 3.

Order Dominant term Poles Zeros
of Negaton Wronskian in Wronskian of of
Wronskian type W(x, t) at x → ±∞ u(x, t) u(x, t)

1 [C0] coshθ coshθ 0 0
1 [S0] sinhθ sinhθ 1 0
2 [C] kγ + coshθ sinhθ coshθ sinhθ 1 2
2 [S] −kγ + sinhθ coshθ sinhθ coshθ 1 2
3 [C2] equation (19) cosh2 θ sinhθ 1 4
3 [S2] equation (20) sinh2 θ coshθ 2 4
4 [C3] equation (21) cosh2 θ sinh2 θ 2 6
4 [S3] equation (22) sinh2 θ cosh2 θ 2 6

Figure 1. The shape and motion of the [C] negaton as given by (17) fork = 0.5 andξ(k) = 0.

Both negatons move with constant speed 4k2, and their shape remains unchanged. The
‘masses’ of both the [C0] and [S0] negatons as given by (12) are−4k.

Wronskians of order 2. The explicit Wronskians are given in table 1 and the corresponding
KdV solutions exhibit very interesting behaviour. The [C] negaton is given by

[C] u(x, t) = 8k2 coshθ(coshθ − kγ sinhθ)

(coshθ sinhθ + kγ )2
. (17)

Its shape and motion is shown in figure 1. It has one singularity corresponding to the zero
of its Wronskian (see table 1). At any fixed timet , the dominant term in the Wronskian at
x → ±∞ is coshθ sinhθ . Therefore, one expects the Wronskian necessarily to have an odd
number of zeros. For this case, there is just one zero giving rise to the singular behaviour
u(x, t) ∝ 2

(x−xP (t))2 . At large negative timet , since the main term in the Wronskian is

coshθ sinhθ , one gets a [C] negaton composed of a ‘soliton’ [C0] (corresponding to the
coshθ factor) with a singularity [S0] on the left (corresponding to the sinhθ factor). This
structure immediately suggests that the mass of the [C] negaton should be−8k, and a com-
putation using (12) confirms this to be the case. The ‘centre of mass’ of the negaton is ap-
proximately halfway between the singularity and the minimum of the ‘soliton’, and it moves
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Figure 2. The (a) positionxP and (b) velocity v of the singularity of the [C] negaton of figure 1
as a function of time.
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Figure 3. The positionsxZ of the two zeros of the [C] negaton of figure 1 as a function of
time.

with a constant speed 4k2. The motion of the polexP (t) is shown in figure 2, which shows
its position and speed. Note that the pole has an asymptotic speed 4k2, which is expected
since the Wronskian just becomes a function ofθ at t → ±∞. u(x, t) also has two zeros
coming from the numerator of equation (17). These two zeros move as shown in figure 3.

Similarly, the [S] negaton is

[S] u(x, t) = −8k2 sinhθ(sinhθ − kγ coshθ)

(sinhθ coshθ − kγ )2
. (18)

This is similar in form to the [C] negaton with sinhθ and coshθ exchanged. As can be seen
in figure 4, at large negative time, the [S] negaton is a singularity [S0] (corresponding to
the sinhθ factor in W ) along with a ‘soliton’ [C0] on the left (corresponding to the coshθ

factor in W ). It has a mass−8k. The [S] negaton shows an interesting oscillation of its
singularity nearx = t = 0. The singularity moves continuously to the right and comes to
a momentary halt at a positive value ofx. It then reverses its direction of motion, goes
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Figure 4. The shape and motion of the [S] negaton as given by (18) fork = 0.5 andξ(k) = 0.

past the origin at timet = 0 with infinite instantaneous velocity and again comes to a halt
at a negative value ofx. Thereafter, the motion of the singularity is continuously in the
positivex direction, with an asymptotic speed 4k2. The motion of the [S] negaton and the
time dependence of its singularity and its two zeros are shown in figures 4, 5 and 6.

Wronskians of order 3–5.The Wronskians of order 3 and 4 are given by:

[C2] W = 1
2 sinh 3θ + sinhθ

(
1
2 + 4k2γ 2

) − 2kγ coshθ + 48k3t coshθ (19)

[S2] W = 1
2 cosh 3θ − coshθ

(
1
2 + 4k2γ 2

) + 2kγ sinhθ − 48k3t sinhθ (20)

[C3] W = 3
2 cosh 4θ + cosh 2θ(−24k2γ 2 + 576k4γ t)

+ sinh 2θ(16k3γ 3 + 12kγ − 384k3t) − 16k4γ 4 − 12k2γ 2

−192k4γ t − 6912k6t2 − 3
2 (21)

[S3] W = 3
2 cosh 4θ + cosh 2θ(24k2γ 2 − 576k4γ t)

− sinh 2θ(16k3γ 3 + 12kγ − 384k3t) − 16k4γ 4 − 12k2γ 2

−192k4γ t − 6912k6t2 − 3
2 . (22)

For any Wronskian, the correspondingKdV solution is readily obtained from (3). The
number of zeros and singularities is shown in table 1. In particular, the [S4] negaton has
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Figure 5. The (a) positionxP and (b) velocity v of the singularity of the [S] negaton of figure 4
as a function of time.
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Figure 6. The positions of the two zerosxZ of the [S] negaton of figure 4 as a function of time.

eight zeros and three singularities. Their motion is shown in figures 7 and 8. Again,
note that at large negative time, the [S4] negaton has a dominant term in the Wronskian
‘sinhθ coshθ sinhθ coshθ sinhθ ’, which gives the structure ‘singularity-soliton-singularity-
soliton-singularity’ seen in figure 7. The two leading singularities show an oscillation around
x = t = 0, but the third one does not.

Wronskians of order(n + 1). At this stage, let us generalize the discussion to Wronskian
determinants of arbitrary order(n+ 1), n = 0, 1, 2, . . . . For any given negaton, the number
of singularities and the number of zeros are both finite. These numbers become steadily
larger as the order of the Wronskian increases. The number of singularities and the number
of zeros remains constant in time and hence characterize a given negaton. The dominant
terms in the Wronskians atx → ±∞ are given in table 1. They follow a simple rule, which
tells whether there are an odd or an even number of negaton singularities. Based on these



Solutions of theKdV and mKdV hierarchy 1813

Figure 7. The shape and motion of the [S4] negaton fork = 0.5 and ξ(k) = 0. Note that
although only four zeros are manifestly visible for the scales used in the figure, there are indeed
a total of eight zeros corresponding to the formula 2n discussed in section 3.

considerations, we expect the following general formulae for the number of singularities:

[Cn] (n + 1)/2 for n odd n/2 for n even

[Sn] (n + 1)/2 for n odd (n + 2)/2 for n even.
(23)

Similar considerations show that there are 2n zeros for both [Cn] and [Sn] negatons. At
least for the choiceξ(k) = 0, we have checked that the number of zeros remains unchanged
in time. It is easy to show that the mass of the [Cn] and [Sn] negatons is−4(n + 1)k, and
the centre of mass moves with constant speed 4k2.

It is interesting to analyse some features of negatons at timet = 0. The Wronskian
for [Sn] has the flat behaviour(kx)(n+1)(n+2)/2 near x = 0 and consequently theKdV

solution has the behaviouru(x, 0) ∝ (n+1)(n+2)

x2 . Likewise, [Cn] has the singular behaviour
u(x, 0) ∝ n(n+1)

x2 at smallx. Note that the timet = 0 is very special, since all negaton
singularities merge atx = 0. At any other timet , the singularities are separated, each
exhibiting a 2

(x−xP (t))2 behaviour. For any given negaton, the separation between singularities
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Figure 8. The (a) positionxP and (b) velocity v of the three singularities of the [S4] negaton
of figure 7 as a function of time.

becomes constant at larget , since all singularities asymptotically move at the same speed
4k2.

4. Structure and motion of positons

The analysis for positons is somewhat different than for negatons since there is only one
type labelled by [̃Cn] and trigonometric functions are involved. A summary of properties
is given in table 2. The simplest positon is

[C̃0] W = cosθ̃ u(x, t) = 2k̃2 sec2 θ̃ θ̃ = k̃(x + 4k̃2t) (24)

which moves to the left at a constant speed 4k̃2. It has an infinite number of singularities,
and in fact this property holds for positons of any even ordern [7]. In contrast, for odd
values ofn, the number of singularities is finite but the number of zeros is infinite. The
positon of order 1 [̃C] has been extensively discussed [5, 7].

[C̃] u(x, t) = 8k̃2 cosθ̃ (cosθ̃ + k̃γ̃ sinθ̃ )

(sinθ̃ cosθ̃ + k̃γ̃ )2
(25)

where γ̃ ≡ ∂k̃θ̃ . In order to compare the motion of positons with negatons, we show
the motion of the singularity of the [C̃] positon in figure 9. The graph shows several
more or less straight sections with periodic jumps. The straight sections have an average
slope 8̃k2 corresponding to the difference of the two characteristic speeds 4k̃2 and 12̃k2

contained in the quantities̃θ and γ̃ respectively in the Wronskian. The jumps occur at
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Table 2. Various characteristics of [C̃n] positons forn = 0, 1, 2, 3.

Order Poles
of Positon Wronskian of
Wronskian type W(x, t) u(x, t)

1 [C̃0] cosθ̃ ∞
2 [C̃] −k̃γ̃ − cosθ̃ sinθ̃ 1
3 [C̃2] equation (26) ∞
4 [C̃3] equation (27) 2

Figure 9. The positionxP of the singularity of the [̃C] positon with k̃ = 0.5 as a function
of time. Also shown is the linexP = −12k̃2t , with a slope−12k̃2 which corresponds to the
average speed of the singularity. The straight sections have a slope−8k̃2.

times(2m + 1)π/(16k̃3) for m = 0, ±1, . . . , and give rise to infinite speeds. Alternatively,
the motion of the singularity can also be described as oscillations around an average constant
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speed 12̃k2. A more detailed description of this motion and an extension to other even values
of n can be found in [7]. For completeness, we give expressions for the Wronskians for
[C̃2] and [C̃3] positons:

[C̃2] W = 1
2 sin 3θ̃ + sinθ̃

(
1
2 − 4k̃2γ̃ 2

) − 2k̃γ̃ cosθ̃ − 48k̃3t cosθ̃ (26)

[C̃3] W = cos 2̃θ(−24k̃2γ̃ 2 − 576k̃4γ̃ t) + sin 2θ̃ (−16k̃3γ̃ 3 + 12k̃γ̃ + 384k̃3t)

− 3
2 cos 4̃θ + 16k̃4γ̃ 4 − 12k̃2γ̃ 2 + 192k̃4γ̃ t − 6912̃k6t2 + 3

2 . (27)

The mass of any positon with oddn is zero. This follows from (12) since all Wronskians
of odd ordern have a power-like behaviour forx → ±∞.

5. Scattering of negatons and positons

Now that we have classified the various types of negaton and positon solutions of theKdV

equation and studied their individual structures and motions, we proceed to a discussion
of scattering. For simplicity, we restrict our attention to processes involving two incident
objects (negatons or positons) with wave numbersk1 and k2 > k1. As might be expected
from previous work, all these objects emerge from the scattering process preserving their
identity but often acquiring a phase shift [1, 5].

Table 3. Various possibilities for the scattering of two negatons of order 0 and wave numbers
k1 andk2 > k1. The quantitiesφi andχi are defined in equation (28).

State Number
at of Wronskian
t → ∞ poles W(x, t)

[C0][C0] 0 W(φ1, χ2)

[S0][S0] 2 W(χ1, φ2)

[C0][S0] 1 W(φ1, φ2)

[S0][C0] 0 W(χ1, χ2)

Negaton–negaton scattering.The simplest situation is the scattering of two negatons of
order 0. There are four possibilities which are shown in table 3. Contained therein
is the standard non-singular soliton–soliton case [C0][C0] resulting from the Wronskian
W(φ1, χ2), where

φi ≡ coshθi χi ≡ sinhθi θi = kix − 4k3
i t i = 1, 2, . . . . (28)

In general, forN solitons, the asymptotic solution att → ±∞ is

u(x, t) =
N∑

i=1

−2k2
i sech2(kix − 4k3

i t ± 1i)

and the phase shifts are well known [1, 2, 12] to be

e21n =
N∏

m=1(m6=n)

∣∣∣∣kn − km

kn + km

∣∣∣∣sgn(n−m)

. (29)

For our case ofN = 2, one gets11 = δ, 12 = −δ, where

δ ≡ 1

2
ln

[
k2 + k1

k2 − k1

]
. (30)
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Figure 10. Scattering of a soliton [C0] with wave numberk1 = 0.5 and a [S0] negaton with
wave numberk2 = 1.0.

Table 4. Scattering of a negaton of order 0 with a negaton of order 1.

State Number
at of Wronskian
t → ∞ poles W(x, t)

[C][S0] 2 W(φ1, ∂k1φ1, χ2)

[C0][C] 1 W(φ1, χ2, ∂k2χ2)

[S][C0] 1 W(χ1, ∂k1χ1, φ2)

[S0][S] 2 W(χ1, φ2, ∂k2φ2)

[C][C0] 1 W(φ1, ∂k1φ1, φ2)

[C0][S] 1 W(φ1, φ2, ∂k2φ2)

[S][S0] 2 W(χ1, ∂k1χ1, χ2)

[S0][C] 2 W(χ1, χ2, ∂k2χ2)

The general condition resulting from uniform motion of the overall centre of mass of a
system is

N∑
i=1

Mi1i

ki

= 0 . (31)

Our results for11 and 12 are consistent with (31) sinceM1 = −4k1 and M2 = −4k2.
Note that sincek2 > k1, the WronskianW(χ1, φ2) produces a solution [S0][S0] with two
singularities at large values of time. The case of [C0][S0] scattering is shown in figure 10.
We have checked from the graphs that the phase shifts are the same as in (30). Indeed all
four entries in table 3 are found to have the same phase shifts. This result is very plausible
since, as mentioned in section 2,C-type andS-type negatons of any given order are related
to each other via an unphysical choice of phasekξ = iπ/2, but this does not affect the
scattering phase shift calculation.

Next consider the scattering of a negaton of order 0 with a negaton of order 1. Here
one has the eight possibilities shown in table 4. As expected, all situations have the same
phase shifts. More specifically, if one considers the scattering of a soliton [C0] with wave
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numberk1 and a negaton [S] with wave numberk2 > k1, the Wronskian isW(φ1, φ2, ∂k2φ2)

and the soliton gets phase shifted by11 = 2δ, whereδ is given in (30). This corresponds
to the special case ofN = 3 andk3 → k2 in the general formula (29), as might be expected
from our physical picture of a negaton. In contrast, the negaton [S] gets phase shifted by
12 = −δ. This follows from the centre-of-mass condition (31) with massesM1 = −4k1

andM2 = −8k2 which were computed before.
It is clear that we can extend the above discussion to the scattering of two negatons

of order 1. For two [C] negatons, the Wronskian isW(φ1, ∂k1φ1, φ2, ∂k2φ2) which can be
expanded to give:

WCC = [γ1γ2k1k2 + 1
2γ1k1 sinh 2θ2 + 1

2γ2k2 sinh 2θ1](k2
1 − k2

2)
2

+ 1
4(k4

1 + 6k2
1k

2
2 + k4

2) sinh 2θ1 sinh 2θ2

−4k1k2(k
2
2 cosh2 θ1 sinh2 θ2 + k2

1 sinh2 θ1 cosh2 θ2) . (32)

The Wronskians for theSS, CS and SC negaton scattering solutions can similarly be
obtained.

At this stage, we can state the general result for phase shifts which follows from
the centre-of-mass condition. Consider the scattering of any negaton of ordern1 [wave

Figure 11. Positon–negaton scattering. The positon [C̃] has a wave number̃k = 1.0 and the
negaton [C] has a wave numberk = 0.5.
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numberk1, massM1 = −4k1(n1 + 1)] with a negaton of ordern2 [wave numberk2, mass
M2 = −4k2(n2+1)]. Negaton 1 will undergo a phase shift11 = (n2+1)δ whereas negaton
2 will have a phase shift12 = −(n1 + 1)δ, with δ given by (30).

Positon–negaton scattering.Here, we consider the scattering of a [C̃] positon with
negatons of different types. The simplest situation is positon–soliton [C̃][C0] scattering.
The Wronskian isW(φ̃, ∂k̃φ̃, φ). Matveev [5] has shown that for this case, the soliton has
zero phase shift. In our approach, the unchanged phase of the soliton can be immediately
and simply understood from the centre-of-mass condition (31) and the fact that the positon
[C̃] has zero mass. The positon phase found by Matveev [5] is

1p = 1
2 tan−1[2kk̃/(k2 − k̃2)] . (33)

Proceeding in the same way, the [C̃][C] WronskianW(φ̃, ∂k̃φ̃, φ, ∂kφ) is given by

W = (k2 + k̃2)2
[
kk̃γ γ̃ + 1

2kγ sin 2θ̃ − 1
2 k̃γ̃ sinh 2θ

] + kk̃(k2 + k̃2)[cosh 2θ + cos 2̃θ ]

− 1
4(k4 − 6k2k̃2 + k̃4) sinh 2θ sin 2θ̃ + kk̃(k2 − k̃2)[1 + cosh 2θ cos 2̃θ ] . (34)

The scattering process is shown in figure 11. Recall that the positon [C̃] has zero mass,
whereas the negaton [C] has mass−8k, twice the mass−4k of a soliton [C0]. Therefore,
our centre-of-mass considerations predict that the negaton will have zero phase shift and
the positon will have a phase shift 21p, where1p is given by equation (33). We have
confirmed this result by careful examination of figure 11. Indeed, we can now state the
general result for a positon [C̃] scattering with any negaton of ordern (mass−4k(n + 1)).
This scattering process gives zero phase shift for the negaton and(n+1)1p for the positon.

6. Singular solutions ofmKdV equation

Recently, it has been shown [8] that the concept of negatons and positons can also be
extended to the modifiedKdV equation:

vt − 6v2vx + vxxx = 0 . (35)

If the KdV equation solutionsu(x, t) are given by (3) and (10), then the corresponding
solutionv(x, t) of the mKdV equation is given by [13]

v(x, t) = ± ∂

∂x
ln

[
W ∗

W

]
(36)

where

W ≡ W(φ, ∂kφ, . . .) W ∗ ≡ W(φ, ∂kφ, . . . , 1) . (37)

Thus, given a WronskianW (and henceu) of the KdV equation, one can immediately obtain
the corresponding solutionv(x, t) of themKdV equation by further computing the Wronskian
W ∗. We would like to point out that it is in fact unnecessary to calculateW ∗ since it can
be shown to be related toW . For example, for the negaton solutions of ordern as given
by [Cn] and [Sn] one can show that

W ∗[Cn] = kn+1W [Sn] W ∗[Sn] = kn+1W [Cn] . (38)

Hence the negaton solutions of ordern of the mKdV equation are simply given by

v = ± ∂

∂x
ln

[
W [Sn]

W [Cn]

]
. (39)
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The singularities ofv come from the zeros ofW [Sn] andW [Cn], which have been discussed
previously, see (23). Therefore, themKdV negaton of ordern has(n + 1) singularities. In
particular, there are no non-singular negaton solutions of themKdV equation!

Using the [C] and [S] negaton Wronskians as given by (7) and (9), we find that the
negaton solutions of order 1 of themKdV equation are given by

v(x, t) = ±4k(sinh 2θ − 2kγ cosh 2θ)

(sinh2 2θ − 4k2γ 2)
. (40)

Note that unlike the [Cn] and [Sn] negatons, the corresponding negatons of themKdV

equation differ from each other simply by a sign. The case of then = 1 negaton is plotted
in figure 12. We would like to remark here that contrary to the claim of Stahlhofen [8], the
negaton (or the corresponding positon) solutions (40) of themKdV equation do not lead to
any new types of solutions of theKdV equation via the Miura transformation

u1,2 = v2 ± v′ (41)

but as expected, they simply give back the negaton solutions given by equations (17)
and (18).

From the negaton–negaton scattering solutions of theKdV equation for wave numbers
k1 andk2 one finds that

W ∗
CC = k2

1k
2
2WSS, W

∗
SS = k2

1k
2
2WCC, W ∗

CS = k2
1k

2
2WSC, W ∗

SC = k2
1k

2
2WCS (42)

so that the negaton–negaton scattering solutions of themKdV equation are given by

v = ± ∂

∂x
ln

[
WSS

WCC

]
, ± ∂

∂x
ln

[
WSC

WCS

]
. (43)

Similarly, for the case of positon–negaton scattering, we have the relations

W ∗
C̃C

= k̃2k2WC̃S(θ̃ → θ̃ + π/2)

W ∗
C̃S

= k̃2k2WC̃C(θ̃ → θ̃ + π/2) (44)

and hence the positon–negaton scattering solutions of themKdV equation are given by

v = ± ∂

∂x
ln

[
WC̃S(θ̃ → θ̃ + π/2)

WC̃C

]
(45)

v = ± ∂

∂x
ln

[
WC̃C(θ̃ → θ̃ + π/2)

WC̃S

]
. (46)

Finally, for the positon–positon scattering case corresponding to wave numbersk̃1 and
k̃2, we have the relation

W ∗
C̃C̃

= k̃2
1k̃

2
2WC̃C̃(θ̃1,2 → θ̃1,2 + π/2) (47)

so that the positon–positon scattering solution of themKdV equation is given by

v = ± ∂

∂x
ln

[
WC̃C̃(θ̃1,2 → θ̃1,2 + π/2)

WC̃C̃

]
. (48)
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Figure 12. The shape and motion of the order 1 negaton of themKdV equation as given by (40)
for k = 0.5 andξ(k) = 0.

7. Singular solutions ofKdV and mKdV hierarchy

We wish to point out that the entire discussion so far about negaton and positon solutions
can be easily generalized to the entireKdV as well asmKdV hierarchy. To this end, let us
first notice that the one-soliton solution of the entireKdV hierarchy is still given by (15)
except that for themth member of the hierarchy,θ is not as given by (4) but by [2]

θ(m) = k(x + ξ(k) − (2k)2mt) . (49)

As a result, theC and S negaton solutions for the entireKdV hierarchy are again given
by (17) and (18) but withθ andγ replaced byθ(m) andγ (m), respectively, where

γ (m) ≡ ∂kθ
(m) = x + ξ(x) + k∂kξ(k) − (2m + 1)(2k)2mt . (50)
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Thus the shape and motion of the C and S negatons is similar for the entire hierarchy.
Besides, all of them have the same mass−8k. Using the expressions forθ(m) andγ (m) it
is straightforward to work out the Wronskians of order 3 and 4 and obtainW for the entire
hierarchy in the case ofC2, S2, C3 andS3 negatons.

Similarly, theC̃ positon solution for the entire hierarchy is again given by (24) but with
θ̃ and γ̃ replaced byθ̃ (m) and γ̃ (m), respectively, where

θ̃ (m) = k̃(x + ξ̃ (k) + (2k)2mt) (51)

γ̃ (m) = x + ξ(k) + k∂kξ(k) + (2m + 1)(2k)2mt . (52)

Similarly, expressions for the higher-order positon solutions can be easily written down and
one again finds that the mass of any positon is zero for oddn.

Finally, the results for the scattering of negatons and positons as derived in section 5
can be immediately generalized in the case of the hierarchy by noting that for theKdV

hierarchy, ast → ±∞, the asymptotic solution forN -solitons is given by

u(x, t) =
N∑

i=1

−2k2
i sech2(kix − ki(2ki)

2mt ± 1i) (53)

where phase shift1 is given by (29) i.e. the phase shifts are the same for the entireKdV

hierarchy [2]. Thus, the entire discussion in section 5 about the negaton–negaton, positon–
negaton and positon–positon scattering goes through for the entireKdV hierarchy and the
phase shifts experienced in various collisions are same for any member of the hierarchy.

Similarly, it is clear that the negaton (and positon) solutions for the entiremKdV hierarchy
are identical in form to those for themKdV equation (35) but whereθ, γ (θ̃ , γ̃ ) are to be
replaced byθ(m), γ (m) (θ̃ (m), γ̃ (m)) respectively. The same comments are also applicable to
scattering solutions.

8. Conclusions and open problems

In this paper we have discussed in some detail the properties of negaton and positon solutions
of the entireKdV hierarchy. Negaton solutions are quite different and at least as interesting
as the previously studied positon solutions [5–7]. In particular, there are two distinct types
of negaton solutions, whereas there is just one type of positon solution. We have also shown
that using theKdV results one can easily obtain the corresponding solutions of themKdV

hierarchy. There are several open problems which are worth investigating. For example, in
this paper we have chosen a zero background potential. It would be worthwhile to see if
new phenomena arise with non-zero backgrounds. For the case of a constant background
potential, there are well known non-singular soliton solutions of theKdV andmKdV equations
which tend to non-zero values asx → ±∞, and singular solutions of the type described
in this paper can be readily constructed. It is expected that these solutions will have some
different properties since it will be possible to have negatons moving to the left, in contrast
to the situation discussed in this paper. This should provide interesting modifications of
the scattering solutions of positons and negatons. Another open problem is to extend this
analysis to the Dirac equation [14]. We hope to address these questions in the near future.
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